Chem. Ber. 107, 3149-3151 (1974)

## Anwendungen der <sup>13</sup>C-Resonanz-Spektroskopie, XVI<sup>1)</sup>

## Notiz über das <sup>13</sup>C-NMR-Spektrum von Benzoloxid-Oxepin

Rainer Wehner und Harald Günther\*

Institut für Organische Chemie der Universität Köln, D-5000 Köln, Zülpicher Straße 47

Eingegangen am 14. Mai 1974

Über die  $^{13}$ C-NMR-Spektren von Oxepinen ist von uns  $^{2)}$  und von Berger und Rieker  $^{3)}$  berichtet worden. Während wir uns zur Ermittlung der charakteristischen  $^{13}$ C-NMR-Daten von Oxepinen und Benzoloxiden auf nichtfluktuierende Verbindungen beschränkten, haben Berger und Rieker auch das temperaturabhängige  $^{13}$ C-Spektrum des valenztautomeren Systems Benzoloxid  $\rightleftharpoons$  Oxepin  $(1 \rightleftharpoons 2)^{4-7})$  vermessen, ohne allerdings die individuellen Spektren von 1 und 2 im Gebiet des langsamen Austauschs beobachten zu können. Wir berichten hier über das Tieftemperaturspektrum von  $1 \rightleftharpoons 2$  und teilen die  $\delta(^{13}$ C)-Werte der Stammverbindungen 1 und 2 mit (Tab. 1). Die Leistungsfähigkeit der  $^{13}$ C-NMR-Spektroskopie zur Untersuchung valenztautomerer Systeme hatten wir bereits früher aufgezeigt  $^{8-10}$ ).

In Äthylchlorid/[D<sub>6</sub>]Aceton (4:1) als Lösungsmittel zeigt das Raumtemperatur- $^{13}$ C-NMR-Spektrum von  $1 \rightleftharpoons 2$  (Abb. 1a) beim Abkühlen nach Linienverbreiterung eine Aufspaltung aller Signale, bis bei -134°C die Überlagerung der individuellen Spektren von 1 und 2 beobachtet wird (Abb. 1b).

<sup>1)</sup> XV. Mitteil.: H. Günther und J. Ulmen, Tetrahedron, im Druck.

<sup>2)</sup> H. Günther und G. Jikeli, Chem. Ber. 106, 1863 (1973).

<sup>3)</sup> St. Berger und A. Rieker, Org. Magn. Resonance 6, 78 (1974).

<sup>4)</sup> E. Vogel, W. A. Böll und H. Günther, Tetrahedron Lett. 1965, 609.

<sup>5)</sup> H. Günther, Tetrahedron Lett. 1965, 4085.

<sup>6)</sup> H. Günther, R. Schubart und E. Vogel, Z. Naturforsch. 22B, 25 (1966).

<sup>7)</sup> E. Vogel und H. Günther, Angew. Chem. 79, 429 (1967); Angew. Chem., Int. Ed. Engl. 6, 385 (1967).

<sup>8)</sup> H. Günther und T. Keller, Chem. Ber. 103, 3231 (1970).

<sup>9)</sup> H. Günther, B. D. Tunggal, M. Regitz, H. Scherer und T. Keller, Angew. Chem. 83, 585 (1971); Angew. Chem., Int. Ed. Engl. 10, 563 (1971).

<sup>10)</sup> H. Günther, H. Schmickler, W. Bremser, F. A. Straube und E. Vogel, Angew. Chem. 85, 585 (1973); Angew. Chem., Int. Ed. Engl. 12, 570 (1973).

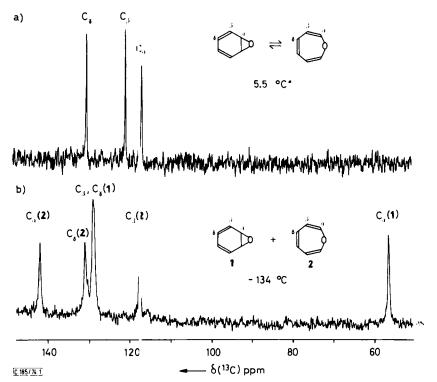



Abb. 1. a) PFT-13C-NMR-Spektrum des fluktuierenden Systems 1 ≠ 2 bei 5.5 °C; Lösungsmittel Äthylchlorid/[D<sub>6</sub>]Aceton (4:1); innerer Standard Tetramethylsilan; 7763 Akkumulationen. b) Überlagerung der 13C-NMR-Spektren der Valenztautomeren 1 und 2 bei -134°C; sonstige Bedingungen wie bei a), 10772 Akkumulationen

Tab. 1.  $\delta(^{13}C)$ -Daten vo 1 Benzoloxiden und Oxepinen (in ppm bez. auf internes Tetramethylsilan)

|                                         | Сα    | Сβ      | C <sub>Y</sub> |
|-----------------------------------------|-------|---------|----------------|
| 1                                       | 56.6  | 128.7   | 128.5          |
| 3a)                                     | 69.9  | 128.3   | 126.3          |
| 4a)                                     | 61.8  | 137.6c) | 139.4¢)        |
| <b>5</b> b)                             | 53.2  | _       |                |
| 2                                       | 141.8 | 117.6   | 130.8          |
| 6a)                                     | 150.2 | 112.3   | 127.6          |
| 7 a)                                    | 145.5 | 112.8   | 135.7          |
| $1 \rightleftharpoons 2 (5.5^{\circ}C)$ | 116.5 | 120.5   | 130.0          |

a) l.c.2).

Die Zuordnung der  $C_{\alpha}$ - und  $C_{\beta}$ -Signale in 2 und des  $C_{\alpha}$ -Signals in 1 wird durch die Daten der Vergleichsverbindungen 3 - 7<sup>2,11)</sup> (Tab. 1) eindeutig festgelegt und durch die Temperaturabhängigkeit der Mittelwertresonanzen im Gebiet des schnellen Austauschs3) bestätigt. Die

b) l.c.11).

c) Zuordnung nicht gesichert.

<sup>11)</sup> G. Jikeli und H. Günther, Angew. Chem. 86, 278 (1974); Angew. Chem., Int. Ed. Engl. 13, 277 (1974).

 $C_{\gamma}$ -Resonanz liefert je ein Signal bei 128.5 und 130.8 ppm. Nur die in Tab. 1 gegebene Zuordnung ergibt in Verbindung mit dem bei 5.5°C gemessenen Mittelwert  $\bar{\delta}_{\gamma}$  nach

$$K = [\bar{\delta}_{Y} - \delta_{Y}(1)]/[\delta_{Y}(2) - \bar{\delta}_{Y}]$$

die korrekte Gleichgewichtskonstante K (1.9), die unabhängig auch aus den Werten für die  $C_{\alpha}$ - und  $C_{\beta}$ -Resonanz bestimmt werden kann (2.3 bzw. 2.5).

Die Konzentration von 1 und 2 wurde bei  $-134^{\circ}\text{C}$  aus der Signalhöhe und der Integration der Signalfläche ermittelt und ergab ein  $\Delta G^0(_{-134})$  von 65 cal/mol zugunsten von 1. Aus  $^1\text{H-Daten}^{5}$  leitet man bei der gleichen Temperatur 300 cal/mol ab  $^{12}$ ). Die Einführung der Methylgruppen in  $\alpha,\alpha'$ -Stellung liefert im Oxepin ähnliche Substituenteneffekte für die  $^{13}\text{C-Resonanz}$  requenz wie im 1,3,5-Cycloheptatrien  $^{2,8}$  ( $\Delta\delta_{\alpha}=8.4$ ,  $\Delta\delta_{\beta}=-5.3$ ,  $\Delta\delta_{\gamma}=-3.2$  ppm). Der Vergleich  $^2$ /1,3,5-Cycloheptatrien ergibt andererseits für den Ersatz von CH2 durch O  $\Delta\delta$ -Werte von 21.4,  $^2$ -9.2 und  $^2$ -9.2 ppm in  $^2$ -9.2 und  $^2$ -9.2 ppm in  $^2$ -9.3 und  $^2$ -9.5 und

Herrn Dr. H.-J. Altenbach danken wir für die freundliche Überlassung einer Probe von  $1 \rightleftharpoons 2$ , der Deutschen Forschungsgemeinschaft für eine großzügige Sachspende.

## **Experimenteller Teil**

Die  $^{13}$ C-NMR-Spektren wurden im PFT-Verfahren mit einem Bruker-HX-90-Spektrometer unter  $^{1}$ H-Breitbandentkopplung bei 22.63 MHz aufgenommen. Für die Daten-Sammlung diente ein Nicolet Computer Typ 1083. Die Meßanordnung für die Tieftemperaturmessungen war die gleiche wie beschrieben  $^{13}$ ). Die Bruker-Temperiereinheit-BS-100-700 wurde zur Temperaturkontrolle benutzt und die Temperatur vor und nach der Messung mit einem Thermoelement in der nichtrotierenden Meßzelle überprüft. Die verwendete Lösung von  $1 \rightleftharpoons 2$  war 0.47 m. Die Konzentration der Valenztautomeren im Tieftemperaturspektrum wurde aus der Signalhöhe und der Intergration der Signalfläche abgeleitet: Signalhöhe [1]:[2] = 55.9:44.1 (K = 0.79); Signalfläche [1]:[2] = 55.8:44.2 (K = 0.79).

13) M. Görlitz und H. Günther, Tetrahedron 25, 4467 (1969).

[185/74]

<sup>12)</sup> Inwieweit die Differenz zwischen den  $\Delta G^0$ -Daten ihre Ursache in einem Lösungsmitteleffekt oder im Meßfehler hat, läßt sich nicht feststellen. Die starke Lösungsmittelabhängigkeit der Enthalpiedifferenz zwischen 1 und 2 ist jedoch bekannt<sup>7)</sup>.